论文部分内容阅读
针对无迹卡尔曼滤波(UKF)鲁棒性不强的问题,结合全球定位系统/惯性导航系统(GPS/INS)紧组合模型特点,提出了基于交互式多模型(IMM)的混合平方根无迹卡尔曼滤波(SRUKF)算法.该算法采用交互式多模型结构,克服了模型不确定性因素的影响;采用平方根滤波技术,解决了协方差矩阵难以保持正定的问题.同时,考虑到内部滤波器与线性/非线性模型不匹配,引入混合滤波思想,对SRUKF进行了优化.将新算法应用于紧组合模型进行仿真,结果表明:新算法能够以适当的时间复杂度,获得较强的鲁棒性能,适用于复杂的导航环境.