论文部分内容阅读
针对现有的基于车牌字符分割的车牌识别方法,在光照,阴暗等特定自然场景下存在无法定位且车牌字符无法正确分割,直接影响车牌字符识别效果的问题,提出一种基于深度学习的车牌定位和识别方法.首先采用深度学习FasterR-CNN算法进行车牌定位,利用k-means++算法来选择最佳车牌区域尺寸,解决现有车牌定位方法在某些自然场景下无法正确定位车牌的问题;然后在AlexNet网络模型的基础上进行改进和重新构建,提出一种增强的卷积神经网络模型AlexNet-L,该模型是一种针对车牌字符识别的端对端网络模型,可提高