论文部分内容阅读
传统聚类方法将对象严格地划分到某一类,但是很多时候边界对象不能被严格地划分。基于粗糙集的k-means聚类算法和基于粗糙集的leader聚类算法,利用粗糙集理论将数据对象划分到一个簇的上近似集或下近似集当中,提供了一种新的处理不确定性的视角,很好地解决了这种边界不确定问题。但其缺点是不能处理混合属性数据,聚类结果对初值有明显的依赖性。针对这些算法存在的不足,给出了一种适用于混合属性数据的距离定义,对初始值的选取提出了改进办法,提出了一种基于粗糙集的混合属性数据聚类算法。仿真实验证明,在不确定聚类簇数