Graphene oxide wrapped magnetic nanoparticle composites induced by SiO2 coating with excellent regen

来源 :矿物冶金与材料学报 | 被引量 : 0次 | 上传用户:jerrylearnsVC
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Graphene oxide (GO) wrapped Fe3O4 nanoparticles (NPs) were prepared by coating the Fe3O4 NPs with a SiO2 layer, and then modifying by amino groups, which interact with the GO nanosheets to form covalent bonding. The SiO2 coating layer plays a key role in integ-rating the magnetic nanoparticles with the GO nanosheets. The effect of the amount of SiO2 on the morphology, structure, adsorption, and re-generability of the composites was studied in detail. An appropriate SiO2 layer can effectively induce the GO nanosheets to completely wrap the Fe3O4 NPs, forming a core-shell Fe3O4@SiO2@GO composite where Fe3O4@SiO2 NPs are firmly encapsulated by GO nanosheets. The optimized Fe3O4@SiO2@GO sample exhibits a high saturated adsorption capacity of 253 mg·g?1 Pb(II) cations from wastewater, and the ad-sorption process is well fitted by Langmuir adsorption model. Notably, the composite displays excellent regeneration, maintaining a ~90% ad-sorption capacity for five cycles, while other samples decrease their adsorption capacity rapidly. This work provides a theoretical guidance to improve the regeneration of the GO-based adsorbents.
其他文献
This study explores the fabrication of Fe-based amorphous/crystalline coating by air plasma spraying and its dependency on the coating parameters (plasma power, primary gas flow rate, powder feed rate, and stand-off distance). X-ray diffraction of the coa
Layered double hydroxides (LDHs) hinder corrosive elements by forming a double layer and locking them between its layers. Hence, LDHs are interesting materials in corrosion inhibition. In this work, Zn–Mg-based LDHs are grown over a copper substrate by us
In this study, Mg–9Al–1Si–1SiC (wt%) composites were processed by multi-pass equal-channel angular pressing (ECAP) at vari-ous temperatures, and their microstructure evolution and strengthening mechanism were explored. Results showed that the as-cast micr
The aim of this investigation was to prepare geopolymeric precursor from vanadium tailing (VT) by thermal activation and modific-ation. For activation, a homogeneous blend of VT and sodium hydroxide was calcinated at an elevated temperature and then modif
This paper presents an experimental investigation of the mechanical and tribological properties of Cu–graphene nanosheets (GN) nanocomposites. We employed the electroless coating process to coat GNs with Ag particles to avoid its reaction with Cu and the
To investigate the impact of an opening and joints with different inclination angles on the mechanical response behavior, the energy evolution characteristics, and distribution law of granite specimens, uniaxial loading tests were performed on the paralle
Radioluminescence (RL) behaviour of erbium-doped yttria nanoparticles (Y2O3:Er3+ NPs) which were produced by sol–gel method was reported for future scintillator applications. NPs with dopant rates of 1at%, 5at%, 10at% and 20at% Er were produced and calcin
Mica was used as a supporting matrix for composite phase change materials (PCMs) in this work because of its distinctive morpho-logy and structure. Composite PCMs were prepared using the vacuum impregnation method, in which mica served as the supporting m
The present study initially investigates the kinetics of microwave-assisted grinding and flotation in a porphyry copper deposit. Kinetic tests were conducted on untreated and microwave-irradiated samples by varying the exposure time from 15 to 150 s. Opti
To investigate the oxidation behavior of a nickel-based superalloy with high hafnium content (1.34wt%), this study performed iso-thermal oxidation tests at 900, 1000, and 1100℃ for up to 200 h. X-ray diffraction and scanning electron microscopy with energ