浅析融媒体新闻产品的“内容为王”

来源 :记者摇篮 | 被引量 : 0次 | 上传用户:echo1108
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
近十年来,融媒体发展不断完善,对新闻产品内容提出更高的要求,由此诞生的"内容为王"理念被人们广泛认同。在"内容为王"理念的指导下,新闻工作者能够根据受众的需求,为其量身定制,从而准确传播,提升产品质量,增强新闻用户的感官体验。新闻媒体单位坚持"内容为王"能够有效增强新闻媒体的传播能力,提升新闻媒体人的综合能力。本文从融媒体时代下的"内容为王"含义出发,阐述以"内容为王"的新闻产品特色,指出融媒体新闻产品实现"内容为王"的具体措施,以促进融媒体新闻的发展。
其他文献
通过热力学软件FactSage 7.0和工业实践,对1 873 K下GCr15轴承钢脱氧过程中非金属夹杂物生成热力学进行研究。计算结果表明,当轴承钢中的w(Mg)>0.4×10-6时,钢中夹杂物由Al2O3转变为MgO·Al2O3;当钢中的w(Mg)>10×10-6时,钢中夹杂物主要为MgO。当轴承钢中w(Al)>100×10-6、w(Ca)>0.1×10-6时,钢中开始生成固态CaO·6Al2O
海洋占地球表面积的70.8%,海洋生态系统是地球上最大的生态系统——生物圈的重要组成部分。鲸类是海洋哺乳动物中最常见且最有代表性的类群,鲸类的种类和数量是监测海洋环境质量重要的生物指标。鲸类叫声具有物种的特性,是鲸类重要的生物学特征,也是分类识别的重要依据。本文的研究对象是鲸类水下声信号,研究的目标是提取出更为准确的鲸类声信号中有用信号的特征,设计出合理的分类识别方案,进一步提高鲸类声信号分类识别
水稻抽穗期直接影响水稻光合效率和地区适应性,进而影响水稻的产量和品质。抽穗期的调控有利于优良种质的种植面积和优势种质资源的交流。借助基因编辑技术的优势,相对系统的研究抽穗期调控通路各位点的表型效应,发掘新的控制水稻抽穗期的基因,创制优异水稻种质,具有重要的理论意义和应用价值。1、水稻抽穗期相关基因突变体库的建立及抽穗差异考察:本研究以秀水134为材料,对30个水稻抽穗调控通路相关基因进行编辑,获得
二维材料具有平面内外各向异性的物理性质,它们可以从相应的体材料中剥离得到,当厚度薄到几个或单个原子层时,开始展现出独特的物理性质,这是由于电子和声子的输运被限制在二维平面内。其独特的性质引起学术界和工业界广泛的研究兴趣,不同领域的科研团队深入开展二维材料及其应用的相关研究,对象涵盖了从最早发现的石墨烯,到六方氮化硼(h-BN)、过渡金属硫化物(TMDs)、磷烯和硅烯等。材料的可控制备是后续研发基于
本研究基于优化、改进后的15N2示踪法,通过16个航次的采样研究,获得胶州湾、大亚湾水体生物固氮速率,基于分子生物学手段分析了固氮生物的组成,探讨了胶州湾、大亚湾固氮作用的时空分布及调控因素。此外,还将优化改进后的同位素示踪吸收法应用于南海开阔水体固氮速率的测定。主要获得如下认识:(1)海湾水体生物固氮作用较为活跃,胶州湾和大亚湾固氮速率的变化范围分别为 n.d.-1.53 nmol N L-1
表面增强拉曼光谱(SERS)和表面增强荧光光谱(SEF)具有低至单分子检测的超高表面灵敏度,SERS和SEF的发展离不开增强基底的发展。金属表面受到光照射时,其表面产生等离激元共振效应,将可见光光子局限于亚波长范围的近场里,随之增强的局域电磁场会放大金属表面的拉曼或荧光分子的信号,这一被增强的电磁场强度会随着距离的增大而减弱。由此可见,增强的拉曼和荧光信号的强弱高度依赖于金属纳米结构材料、形貌、尺
ENSO多样性是指近几十年来热带太平洋上出现的不同类型的ENSO现象,每一种ENSO现象对全球天气和气候都有着显著不同的影响。本文主要讨论ENSO的暖事件:厄尔尼诺现象。与传统的厄尔尼诺(也称为EP型厄尔尼诺)不同,新型的厄尔尼诺SST的暖中心更多地转移到赤道太平洋中部,因此,它通常被称为中太平洋厄尔尼诺(CP型厄尔尼诺)或ENSO Modoki。这种厄尔尼诺的形成机制被广泛的讨论,有学者认为它应
目前沼气厌氧发酵过程会产生大量含有有机物、氮、磷等污染物的沼液,未经处理的沼液如果随意排放,不但污染环境,同时也会导致资源浪费。利用沼液培养微藻既能用较低的生产成本获得有较高价值的微藻产品,又能实现对沼液的无害化和资源化。为此,本文设计了一种沼气厌氧发酵耦合膜式光生物反应器(Membrane photobioreactor,MPBR)培养微藻的系统。该系统将沼气厌氧发酵过程与微藻培养耦合起来,对沼
目的:为了研究atRAL引起感光细胞死亡的具体作用机制,并探究JNK信号通路在视网膜退化和感光细胞死亡中的作用。方法:首先,用atRAL处理感光细胞661W,分别用MTS法检测其细胞活力和TUNEL染色检测其细胞凋亡水平。通过蛋白免疫印迹检测细胞凋亡和DNA损伤相关的蛋白水平,并用免疫荧光的方法进行验证。其次,利用蛋白免疫印迹和免疫荧光检测JNK信号通路的相关分子;同时,分别利用JNK特异性的抑制
锂-氧气电池因具有比传统锂离子电池高10倍左右的理论能量密度(3505 Whkg-1),而受到了研究者们的广泛关注,甚至被认为是一代所谓“终极”化学电源。但是,该体系复杂程度也很高,涉及多相反应动力学、氧气正极钝化、产物/电极界面、副反应以及金属锂负极枝晶和腐蚀等关键问题和难点。这些问题直接或间接地影响了锂-氧气电池的电化学性能,使其不仅具有较高的充放电过电位(或较低的能量效率),而且还具有较差的