论文部分内容阅读
该文提出了基于免疫克隆聚类的协同神经网络原型向量求解算法,该算法充分利用免疫克隆的高效全局最优搜索能力构造数据聚类算法,将新聚类算法用于训练协同神经网络的原形向量,并对Brodatz纹理图像库以及合成孔径雷达图像目标进行识别。仿真实验结果表明,相比标准协同神经网络,该算法可以提高网络的识别性能,同经典的支撑向量机相比,该算法在识别率相当的情况下,样本的训练和测试时间都明显缩短。