论文部分内容阅读
【摘要】 焊接变形可以分为在焊接热过程中发生的瞬态热变形和在室温条件下的残余变形。影响焊接变形的因素很多,但归纳起来主要有材料性能、设计结构和焊接工艺三个方面。
1. 材料因素的影响
金属的焊接是金属的一种加工性能,接变形的影响不仅和焊接材料有关,而且和母材也有关系,它决定于金属材料的本身性质和加工条件。金属的化学成分不同,其焊接性也不同。碳的影响最大,其它合金元素可以换算成碳的相当含量来估算它们对焊接性的影响。
碳当量CE=C+Mn/6+(Ni+Cu)/15+(Gr+Mo+V)
/5(%),式中各化学元素含量取其成分的上限。碳当量越大,焊接性能越差。
当CE<0.4%时,钢材焊接性良好,冷裂纹倾向小,焊接时一般不需加热;当CE=0.4~0.6时,焊接性较差,冷冽倾向明显,焊接时需预热并采取其它工艺措施;CE>0.6时,焊接性差,冷冽倾向严重,焊接时需要较高预热温度和严格的工艺措施。
2. 结构设计因素的影响
焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。虽然焊接工件随拘束度的增加,焊接残余应力增加,焊接变形相应减少,但在焊接变形过程中,工件本身的拘束度是不断变化着的,复杂结构自身的拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中的拘束度变化情况随结构复杂程度的增加而增加。在设计焊接结构时,常需要采用筋板或加强板来提高结构的稳定性和刚性,这样做不但增加了装配和焊接工作量,而且给焊接变形分析与控制带来了一定的难度。因此,在结构设计时针对结构板的厚度及筋板或加强筋的位置数量等进行优化,对减小焊接变形有着十分重要的作用。
3. 焊接工艺的影响
3.1焊接方法的影响:
在金属结构焊接常用的焊接方法有埋弧焊,手工焊和CO2气体保护焊等,各种焊接方法的热输入差别较大,其中埋弧焊热输入最大,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。一般情况下,焊接热输入大时,加热的高温区范围大,冷却速度慢,接头塑性变形区增大。
3.2焊接接头形式的影响
3.2.1表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
3.2.2 T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3.2.3对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
3.2.4双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
3.3焊接层数的影响
3.3.1横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
3.3.2纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
焊接变形的预防与控制措施:
1. 设计措施
1.1尽量减少焊缝数量
焊缝截面积是指熔合线范围内的金属面积。坡口尺寸越大,焊缝面积越大,冷却时收缩引起的塑性变形量越大,收缩变形越大。在设计焊接结构时,应当避免不必要的焊缝,尽量选用型钢、冲压件代替焊件。合理地选择肋板的形状,适当地安排肋板的位置,优化肋板数量,避免不必要的焊缝,以减少肋板数量来减少焊接和矫正变形的工作量。
1.2合理地选择焊接的尺寸和形式
焊接尺寸直接关系到焊接工作量和焊接变形的大小。焊缝尺寸大,焊接量大,焊接变形就大。因此,要尽量减少焊缝的数量和尺寸,在保证结构的承载能力的条件下,设计时应尽量尽可能采用较小的坡口尺寸,减小焊缝截面积,对于板缝较大的对接接头应选“X”型坡口代替“V”型坡口,减少熔敷金属总量以减少变形。对于不需要进行强度计算的“T”型接头,应选用工艺上合理的最小焊脚尺寸,采用断续焊缝比采用连续焊缝更能减少变形。
1.3合理设计结构形式及合理安排焊缝位置
设计结构时应考虑焊接工作量最小,以及部件总装时的焊接变形量最小。薄板结构应选合适的板厚,减少骨架间距及焊角尺寸,以减少波浪变形。此外,还应避免设计曲线形结构。由于焊缝横向收缩通常比纵向收缩显著,因此应尽量将焊缝布置在平行于焊接变形量最小的方向,焊缝位置应尽量对称于截面中心线(或轴线),或者使焊缝接近中心线线(或轴线),这对于减少梁、柱等类型结构的扭曲曲变形有良好的效果。
2. 工艺措施
工艺措施是指在焊接构件生产制造过程中所采用的一系列措施,将其分为焊前预防措施、焊接过程中的控制措施和焊后矫正措施。
2.1焊前预防措施
焊接应力的控制措施主要包括反变形法、加裕量法、刚性固定法和预拉伸法。
2.1.1反变形法是根据预测的焊接变形大小和方向,在焊件装配时造成与焊接残余变形大小相当、方向相反的预变形量(反变形量),焊后焊接残余变形抵消了预变形量,使构件恢复到设计要求的几何形状和尺寸。
2.1.2刚性固定法是采用夹具或刚性胎具将被焊构件加以固定来限制焊接变形,对于刚度小的结构刚性固定可有效的控制角变形、波浪变形及弯曲变形。
2.1.3预拉伸法是采用机械预拉伸或加热预拉伸的方法使钢板得到预先的拉伸与伸长,这时在张紧的钢板上进行焊接装配,焊后去除预拉伸或加热,使钢板恢复初始状态。此方法多用于薄板平面构件,可有效地降低焊接残余应力,防止波浪变形。
2.2焊接过程控制措施
焊接过程中采用合理的焊接方法和焊接参数,选择合理的焊接次序,随焊强制冷却,等措施均可降低焊接残余应力、减小焊接变形。
2.2.1先焊短焊缝后焊长焊缝。焊接1米以上的长焊缝时要两头中间断断续续的焊,不要连续焊接,采用逐步退焊、跳焊预留焊接长度的方法,预留100~200mm的焊缝对纵向收缩变形给予补偿,减少焊接变形量。
2.2.2厚板焊接尽可能采用多层焊代替单层焊。“T”形接头板厚较大时采用开坡口对接焊缝。双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中心线(或轴线)对称的焊接顺序。
2.2.3纵向加强肋和横向加强肋的焊接可采用间断焊接法。中心板和内环板之间的焊缝,可由数名焊工均布对称施焊,并可同时进行。
2.2.4对于焊缝较多的构件,组焊时要采取合理的焊接顺序。根据结构和焊缝的布置,要先焊收缩量较大的焊缝,后焊收缩量较小的焊缝;先焊拘束度较大而不能自由收缩的焊缝,后焊拘束度较小而能自由收缩的焊缝。
2.3焊后矫正措施
当构件焊接后,只能通过矫正措施来减小或消除已发生的残余变形。焊后矫正措施主要分为机械矫正和加热矫正。加热矫正又分为整体加热和局部加热。
机械矫正:采用手工锤击、压力机、多辊平板机等对焊件进行静力加压或辗压,产生新的塑性变形,使原来缩短的部分得到延伸,从而矫正变形。
加热矫正:
2.3.1整体加热矫正是指将整体构件加热至锻造温度以上再进行矫正的方法,可用以消除较大的形状偏差。但是焊后整体加热容易引起冶金方面的副作用,限制了该方法的进一步推广及应用。
2.3.2局部加热矫正多采用火焰对焊接构件局部加热,在高温处,材料的热膨胀受到构件本身刚性制约,产生局部压缩塑性变形,冷却后收缩,抵消了焊后部位的伸长变形,达到矫正目的, 局部加热矫正方法简便灵活,因此在生产上广为应用。在实际使用时应控制加热的温度与位置,对于低碳钢和普通低合金钢,常采用600~800℃的加热温度。
1. 材料因素的影响
金属的焊接是金属的一种加工性能,接变形的影响不仅和焊接材料有关,而且和母材也有关系,它决定于金属材料的本身性质和加工条件。金属的化学成分不同,其焊接性也不同。碳的影响最大,其它合金元素可以换算成碳的相当含量来估算它们对焊接性的影响。
碳当量CE=C+Mn/6+(Ni+Cu)/15+(Gr+Mo+V)
/5(%),式中各化学元素含量取其成分的上限。碳当量越大,焊接性能越差。
当CE<0.4%时,钢材焊接性良好,冷裂纹倾向小,焊接时一般不需加热;当CE=0.4~0.6时,焊接性较差,冷冽倾向明显,焊接时需预热并采取其它工艺措施;CE>0.6时,焊接性差,冷冽倾向严重,焊接时需要较高预热温度和严格的工艺措施。
2. 结构设计因素的影响
焊接结构的设计对焊接变形的影响最关键,也是最复杂的因素。虽然焊接工件随拘束度的增加,焊接残余应力增加,焊接变形相应减少,但在焊接变形过程中,工件本身的拘束度是不断变化着的,复杂结构自身的拘束作用在焊接过程中占据主导地位,而结构本身在焊接过程中的拘束度变化情况随结构复杂程度的增加而增加。在设计焊接结构时,常需要采用筋板或加强板来提高结构的稳定性和刚性,这样做不但增加了装配和焊接工作量,而且给焊接变形分析与控制带来了一定的难度。因此,在结构设计时针对结构板的厚度及筋板或加强筋的位置数量等进行优化,对减小焊接变形有着十分重要的作用。
3. 焊接工艺的影响
3.1焊接方法的影响:
在金属结构焊接常用的焊接方法有埋弧焊,手工焊和CO2气体保护焊等,各种焊接方法的热输入差别较大,其中埋弧焊热输入最大,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。一般情况下,焊接热输入大时,加热的高温区范围大,冷却速度慢,接头塑性变形区增大。
3.2焊接接头形式的影响
3.2.1表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。
3.2.2 T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。
3.2.3对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。
3.2.4双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。
3.3焊接层数的影响
3.3.1横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。
3.3.2纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
焊接变形的预防与控制措施:
1. 设计措施
1.1尽量减少焊缝数量
焊缝截面积是指熔合线范围内的金属面积。坡口尺寸越大,焊缝面积越大,冷却时收缩引起的塑性变形量越大,收缩变形越大。在设计焊接结构时,应当避免不必要的焊缝,尽量选用型钢、冲压件代替焊件。合理地选择肋板的形状,适当地安排肋板的位置,优化肋板数量,避免不必要的焊缝,以减少肋板数量来减少焊接和矫正变形的工作量。
1.2合理地选择焊接的尺寸和形式
焊接尺寸直接关系到焊接工作量和焊接变形的大小。焊缝尺寸大,焊接量大,焊接变形就大。因此,要尽量减少焊缝的数量和尺寸,在保证结构的承载能力的条件下,设计时应尽量尽可能采用较小的坡口尺寸,减小焊缝截面积,对于板缝较大的对接接头应选“X”型坡口代替“V”型坡口,减少熔敷金属总量以减少变形。对于不需要进行强度计算的“T”型接头,应选用工艺上合理的最小焊脚尺寸,采用断续焊缝比采用连续焊缝更能减少变形。
1.3合理设计结构形式及合理安排焊缝位置
设计结构时应考虑焊接工作量最小,以及部件总装时的焊接变形量最小。薄板结构应选合适的板厚,减少骨架间距及焊角尺寸,以减少波浪变形。此外,还应避免设计曲线形结构。由于焊缝横向收缩通常比纵向收缩显著,因此应尽量将焊缝布置在平行于焊接变形量最小的方向,焊缝位置应尽量对称于截面中心线(或轴线),或者使焊缝接近中心线线(或轴线),这对于减少梁、柱等类型结构的扭曲曲变形有良好的效果。
2. 工艺措施
工艺措施是指在焊接构件生产制造过程中所采用的一系列措施,将其分为焊前预防措施、焊接过程中的控制措施和焊后矫正措施。
2.1焊前预防措施
焊接应力的控制措施主要包括反变形法、加裕量法、刚性固定法和预拉伸法。
2.1.1反变形法是根据预测的焊接变形大小和方向,在焊件装配时造成与焊接残余变形大小相当、方向相反的预变形量(反变形量),焊后焊接残余变形抵消了预变形量,使构件恢复到设计要求的几何形状和尺寸。
2.1.2刚性固定法是采用夹具或刚性胎具将被焊构件加以固定来限制焊接变形,对于刚度小的结构刚性固定可有效的控制角变形、波浪变形及弯曲变形。
2.1.3预拉伸法是采用机械预拉伸或加热预拉伸的方法使钢板得到预先的拉伸与伸长,这时在张紧的钢板上进行焊接装配,焊后去除预拉伸或加热,使钢板恢复初始状态。此方法多用于薄板平面构件,可有效地降低焊接残余应力,防止波浪变形。
2.2焊接过程控制措施
焊接过程中采用合理的焊接方法和焊接参数,选择合理的焊接次序,随焊强制冷却,等措施均可降低焊接残余应力、减小焊接变形。
2.2.1先焊短焊缝后焊长焊缝。焊接1米以上的长焊缝时要两头中间断断续续的焊,不要连续焊接,采用逐步退焊、跳焊预留焊接长度的方法,预留100~200mm的焊缝对纵向收缩变形给予补偿,减少焊接变形量。
2.2.2厚板焊接尽可能采用多层焊代替单层焊。“T”形接头板厚较大时采用开坡口对接焊缝。双面均可焊接操作时,要采用双面对称坡口,并在多层焊时采用与构件中心线(或轴线)对称的焊接顺序。
2.2.3纵向加强肋和横向加强肋的焊接可采用间断焊接法。中心板和内环板之间的焊缝,可由数名焊工均布对称施焊,并可同时进行。
2.2.4对于焊缝较多的构件,组焊时要采取合理的焊接顺序。根据结构和焊缝的布置,要先焊收缩量较大的焊缝,后焊收缩量较小的焊缝;先焊拘束度较大而不能自由收缩的焊缝,后焊拘束度较小而能自由收缩的焊缝。
2.3焊后矫正措施
当构件焊接后,只能通过矫正措施来减小或消除已发生的残余变形。焊后矫正措施主要分为机械矫正和加热矫正。加热矫正又分为整体加热和局部加热。
机械矫正:采用手工锤击、压力机、多辊平板机等对焊件进行静力加压或辗压,产生新的塑性变形,使原来缩短的部分得到延伸,从而矫正变形。
加热矫正:
2.3.1整体加热矫正是指将整体构件加热至锻造温度以上再进行矫正的方法,可用以消除较大的形状偏差。但是焊后整体加热容易引起冶金方面的副作用,限制了该方法的进一步推广及应用。
2.3.2局部加热矫正多采用火焰对焊接构件局部加热,在高温处,材料的热膨胀受到构件本身刚性制约,产生局部压缩塑性变形,冷却后收缩,抵消了焊后部位的伸长变形,达到矫正目的, 局部加热矫正方法简便灵活,因此在生产上广为应用。在实际使用时应控制加热的温度与位置,对于低碳钢和普通低合金钢,常采用600~800℃的加热温度。