论文部分内容阅读
针对离散粒子群优化算法进行基因特征选择容易陷入局部最优解的问题,提出一种基于离散粒子群优化和邻域约简的组合优化算法。利用邻域约简挖掘基因数据本身蕴含知识的特点,依据决策属性对条件子集的依赖度构造离散粒子群优化算法中的优化函数,根据优化函数值的大小引导粒子搜索最优基因特征子集,从而解决局部最优的问题。实验结果表明,与粒子群优化和遗传算法的混合优化算法、优化的邻域粗糙集等算法相比,该算法能够获得较高的分类准确度。