论文部分内容阅读
针对空间分解类信噪比(SNR)估计算法中子空间维数估计复杂度较高,低信噪比下估计偏差较大的问题,提出了一种改进的子空间维数估计算法。该算法首先利用样本自相关矩阵的奇异值序列进行后向差分得到梯度序列,对梯度序列每一项与后5项之和的比值进行搜索,最大比值所对应的奇异值序号作为信号子空间维数,最后计算信噪比。合适数据长度下的仿真结果表明:在信噪比-5 dB-20 dB范围内,常规通信信号的信噪比估计平均偏差小于0.5 dB,标准差小于1 dB;该算法提升了低信噪比下的估计性能,运算量较小,无需知道调制方式、载波