论文部分内容阅读
计算机网络的安全在当今社会起着举足轻重的作用。该文将基于分类器选择的模式识别方法应用于入侵检测,提出了一种基于静态分类器选择的网络入侵检测方法。该方法对经过聚类获得的各个区域采用新的策略进一步划分,在划分后的子区域上选择分类器,结合了最近邻规则,减小静态分类器选择方法的误差,提高了检测性能。聚类选择(CS)是典型的静态分类器选择方法,在KDD'99的入侵检测数据集上的实验表明,该方法的性能优于基于聚类选择的网络入侵检测方法。