论文部分内容阅读
利用Nevanlinna理论研究了亚纯函数的Borel方向和超越方向之间的关系以及函数与其导数的公共超越方向.当亚纯函数具有正增长级时,其Borel方向必然是该函数的超越方向.对于有穷正级ρ的整函数,含有Borel方向的超越方向集合分支的Lebesgue测度至少为min{2π,π/ρ},且其导数的超越方向必然也是该函数的超越方向.