论文部分内容阅读
把散度的概念引入到图像分析中,考虑到图像在不同方向上的性质不同,提出了一种基于散度的相关性拉普拉斯变换不同焦点图像融合算法.首先对源图像进行相关性拉普拉斯分解,获得图像的低频和高频分量;然后对低频分量采用平均能量法进行融合,对高频分量利用图像梯度场的散度作为显著性特征进行融合;最后对融合后的图像分量进行拉普拉斯反变换重构出融合图像.实验结果表明该方法的保真度更高,边缘信息保留性能更好.