论文部分内容阅读
该文针对实用人脸识别中的光照、表情、姿态等变化问题,通过因子分析和数据挖掘提出一种鲁棒的人脸识别方法。本文首次提出基于因子分析的人脸识别方法,并分析基于内容与风格信息的因子分析模型的人脸识别方法与基于Fisher线性判别分析的人脸识别方法的一致性。为了提高该方法的鲁棒性,通过两因子方差分析与加性模型分离人脸内因子与外因子,降低风格信息对人脸观察特征的影响。实验结果表明:此方法比Fisher脸方法具有更高、更稳健的性能,特别是在Fisher脸方法无能为力的复杂环境下能表现出较好的性能。