论文部分内容阅读
以恒变速率凸轮压缩试验机得到的实验数据为基础,利用Matlab人工神经网络工具箱,建立了优质碳素结构钢的变形抗力预测模型。通过该网络的μ参数的自适应调整,提高了收敛速度,使金属塑性变形抗力的预测精度大为提高。
Based on the experimental data obtained from constant rate cam compression testing machine, the deformation resistance prediction model of high quality carbon structural steel was established by Matlab artificial neural network toolbox. Through the adaptive adjustment of the μ parameter of the network, the convergence rate is improved, and the prediction accuracy of the metal plastic deformation resistance is greatly improved.