论文部分内容阅读
基于温度变化对拉索张拉力和垂度的影响,利用Hamilton变分原理,引入拟静态假设,推导温度场中受多频激励下悬索的非线性运动微分方程。利用Galerkin法得到离散后的无穷维方程,并考虑一阶正对称模态,利用多尺度法求解系统发生组合联合共振时的幅频响应方程组,并判断稳态解的稳定性。考虑四组垂跨比及四种温度变化工况,通过数值算例探究悬索组合联合共振的响应特性及其受温度变化影响。研究结果表明:多频激励时系统同时展现出组合共振和超谐波共振响应的特性;此时稳态解个数、共振区间、响应幅值及其相位等均会发生改变;温度变