论文部分内容阅读
提出一种基于最小二乘支持向量机(LS-SVM)的径流预测方法。采用线性函数、多项式函数和径向基函数3种核函数进行机器学习,经过反复计算和对比分析,建立了精度较高的径流预测模型。预测实例表明,LS-SVM模型预测的平均相对误差比支持向量机(SVM)减少了2.4%,预测合格率为100%。LS-SVM建模速度快,适用于小样本情况并能得到全局最优解,将其用于径流预测是可行的。