论文部分内容阅读
文本语块识别在自然语言处理领域具有重要作用。以WINNOW、支持向量机和感知器三种典型的语块识别方法为对象,从模型和特征两方面对每种方法进行了剖析,并比较和分析了三种方法与隐马尔科夫模型的优缺点,指出如果为了避免数据稀疏而只采用"词性"特征来识别多种语块,那些对于"词"敏感的短语准确率将会很低。因此针对不同的语块采用不同的特征和策略,不同短语的识别相互借鉴,把不同语块的识别集成在一起,将会起到很好的效果。