论文部分内容阅读
对于非线性Euler方程,提出一类基于完美匹配层(PML)技术的吸收边界条件。首先对线性化的Euler方程设计出PML公式,然后将线性化Euler方程中的通量函数替换成相对应的非线性通量函数,得到非线性的PML方程。考虑到PML方程中包含有一个刚性的源项,文中采用一种隐显Runge-Kutta方法来求解空间半离散后得到的ODE系统。数值实验表明设计的非线性PML吸收边界条件优于传统的特征边界条件。