论文部分内容阅读
针对停车位置检测的问题,采用基于霍夫变换检测停车线,分割每个停车区域的图像预处理,使用VGG目标检测模型对每个停车区域进行迁移学习,判别相融合的空闲车位检测方法,对露天停车场高空定点摄像头传回的视频进行空闲车位识别与位置标注方面的研究。研究发现:VGG目标检测模型采用卷积神经网络减轻人工提取特征的工作量,与目标检测和识别中的经典机器学习方法相比,有较高的目标检测效率和准确度,为定点停车位的检测提供了一种实时位置反馈的解决方案。