论文部分内容阅读
在非寿险分类费率厘定中,泊松回归模型是最常使用的索赔频率预测模型,但实际的索赔频率数据往往存在过离散特征,使泊松回归模型的结果缺乏可靠性。因此,讨论处理过离散问题的各种回归模型,包括负二项回归模型、泊松一逆高斯回归模型、泊松一对数正态回归模型、广义泊松回归模型、双泊松回归模型、混合负二项回归模型、混合二项回归模型、Delaporte回归模型和Sichel回归模型,并对其进行系统比较研究认为:这些模型都可以看做是对泊松回归模型的推广,可以用于处理各种不同过离散程度的索赔频率数据,从而改善费率厘定的效果;同时