论文部分内容阅读
针对传统Prony算法在分析低频振荡时对噪声非常敏感的缺点,提出一种基于神经网络自适应滤波和改进Prony算法相结合的电力系统低频振荡分析方法。该方法以广域测量信号作为输入,采用神经网络自适应滤波对低频振荡信号进行滤波预处理,调节性能指标阀值确定滤波效果,并通过改进Prony算法对滤波后的信号进行识别。仿真结果表明,该方法能有效滤除噪声,能较为准确地辨识低频振荡的主导模式。