后备用磷酸铁锂电池组应用特性研究

来源 :电源技术 | 被引量 : 0次 | 上传用户:z24514516210
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
后备电池的浮充工况不同于循环充放电工况,后备用磷酸铁锂电池沿用了与循环充放电工况相同的电池管理方法,造成电池组管理不当,引起电池寿命衰减严重、电源供电故障、甚至是安全事故,论述了磷酸铁锂电池浮充工况特性及管理方法,对提升后备磷酸铁锂使用性能具有重要意义.
其他文献
介绍了大型汽轮发电机配套的无刷励磁机外旋转电枢的制造工艺、关键工序及制造难点.
将具有亲水短侧链的离子交换树脂应用于燃料电池膜电极,测试了不同湿度下的电池性能.结果证明,亲水短侧链离子交换树脂膜电极最佳空气湿度为20%,此时最高功率密度为721 mW/cm2@1277 mA/cm2,比常规膜电极高出20%,常规膜电极的最佳湿度为60%.EIS和CV测试表明,更小的电荷转移电阻Rct和欧姆电阻Rs,是短侧链树脂膜电极低湿度下性能优异的原因.综上,亲水短侧链树脂膜电极更适宜在低增湿下应用.
通过耦合电化学和传质物理场,建立了稳态、单相、三维质子交换膜(PEM)水电解池模型.讨论了不同形式的流场(平行、单通道蛇形、多通道蛇形和交指形流场)对电流密度分布、氧气浓度分布以及压力分布的影响,从而影响对水电解池的性能,并分析了在平行流场中化学计量数对水电解池性能的影响.结果表明,在相同的工况下,交指形流场的性能最差,平行流场的性能最好.同时,增大化学计量数可以明显提高质子交换膜水电解池的性能.
利用氢气催化氧化法对质子交换膜燃料电池(PEMFC)电堆进行-32°C的低温启动,结果表明在经过10次冷启动后,电堆整体输出性能没有明显衰减.然而通过对该短堆进行解析发现膜电极组件(MEA)存在局部衰减,主要是电堆出口和入口处对应区域的MEA发生了衰减,其中出口处的衰减更为明显.通过对电堆入口、中间和出口区域的电极进行循环伏安、电化学阻抗和线性扫描伏安测试,结果表明:入口处的电极衰减主要来自于催化剂的团聚或者流失以及水结冰导致的膜的氢气透过性增加;出口处的电极衰减主要来自于催化剂的团聚或者流失.
将聚醚醚酮(PEEK)与浓硫酸混合,得到了磺化度为73.49%的磺化聚醚醚酮(SPEEK);在SPEEK中加入不同含量的聚丙烯腈(PAN),通过静电纺丝制备出了纳米纤维型质子交换膜(S/P复合膜).通过热压,减小了纤维膜内的孔隙和厚度,有效降低了膜内的燃料分子渗透现象与传导阻抗.结果显示,当PAN质量分数为5%时,S/P复合膜具有与Nafion 211膜相近的吸水溶胀率,但有更高的质子传导率与机械性能.在70℃,100%湿度条件下,S/P复合膜具有更大的输出功率.
高温质子交换膜燃料电池(HT-PEMFC)阳极采用重整气为燃料时,阳极操作条件对HT-PEMFC电流分布的均匀性有重要影响,并进一步影响电池的性能和寿命.探究了重整气组成、燃料化学计量比和放电电流对电流分布均匀性的影响.研究结果表明重整气组分中H2含量越低,CO含量越高,电流分布不均匀程度越大;降低燃料化学计量比和增加放电电流均导致电流分布均匀性降低,且H2含量更低,CO含量更高的重整气为燃料时,燃料化学计量比和放电电流对电流分布的影响更加显著.研究结果可为HT-PEMFC流场结构、膜电极结构设计和操作条
描述了一种锂离子电池负极片产生黑斑的失效现象,通过拆解及形貌、成分测试,分别从负极材料的结构特性、电解液成分、Na源追溯、水分残留四个方面分析了负极片产生黑斑的原因.
研究了高镍-石墨体系锂离子电池在25℃,4种循环倍率(0.5 C,1 C,2 C,阶梯充)下的循环性能及直流内阻,并采用EIS对电池不同健康状态进行研究,辨识电池循环过程中的阻抗变化规律.研究表明,电池在0.5 C循环时寿命衰减最快,阶梯充电的寿命和内阻性能最好.EIS分析表明,电池前600次循环,电荷转移阻抗减小,然后随着循环的进行,电池电荷转移阻抗及总阻抗都持续增大.
采用直流电弧等离子体法制备了Sn/TiC复合纳米粒子锂离子电池负极材料.采用X射线衍射(XRD)和透射电子显微镜(TEM)分析Sn/TiC复合纳米粒子的组成和结构.Sn/TiC复合纳米粒子的形貌呈球状颗粒,粒径分布在20~70 nm,TiC与Sn两相均匀分布避免了Sn纳米粒子发生团聚,同时抑制Sn电极的体积变化,提高其电化学性能.随着复合材料中TiC含量的逐渐增加,其电化学性能也逐渐提高.其中Sn/TiC(36%)和Sn/TiC(45%)电极表现出最佳的循环性能(100次循环后比容量分别稳定在380.0和
采用静电纺丝法和退火相结合的方法制备了电池负极Fe7Se8/N-CNFs复合材料,并与块状Fe7Se8进行了微观结构和电化学性能对比分析.结果表明,复合材料中氮掺杂碳纤维表面弥散分布着细小Fe7Se8粒子(比表面积约50.2 m2/g),而块状Fe7Se8电极中Fe7Se8粒子团聚成块状(比表面积约为9.9 m2/g).经过100次循环后,复合材料电极和块状Fe7Se8电极的容量保持率分别为91.4%和76.4%;复合电极材料在0.2~20 A/g电流密度下的放电比容量都要高于块状Fe7Se8电极.在电流