基于联盟链的指挥信息系统数据保护研究

来源 :计算机技术与发展 | 被引量 : 0次 | 上传用户:dgjjtjn
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着社会信息化的快速发展,指挥信息系统逐渐成为作战的核心要素,所面临的数据安全问题也随之增加。传统的中心化数据保护方式易出现单点失效和数据篡改等问题,难以有效保障系统的数据安全。针对这些问题,结合区块链去中心化、不可篡改、可追溯审计以及可编程等优势,提出了一种基于联盟链的指挥信息系统数据保护方案,分析了指挥信息系统的节点功能,利用多通道结构对节点权限进行了划分,设计并实现了基于混合加密的数据保护智能合约,保证链上数据分布式存储、不可篡改、完整性可验证,支持数据的授权共享,并对非授权节点保密。测试结果显示,
其他文献
基于知识图谱的问答系统(knowledge base question answering,KBQA)目前已成为自然语言处理中的热门研究领域。问答系统的应用涉及诸多领域,如医药、电力、交通等各个方面。由此可见,问答系统已成为社会生产发展中必不可少的一项技术。该文聚焦于国内外针对知识图谱的问答系统的研究与应用,对其进行分析梳理,总结了知识图谱、知识库以及问答系统的历史、发展及应用等相关知识,以及现有基于知识图谱的问答系统构建的三类方法,分别为基于模板匹配的方法、基于语义解析的方法以及基于向量建模的方法,探究
经过多年来的信息化建设和积累,交通信息资源总量呈指数级增长,大数据带来的安全问题也日益突显。随着智慧交通系统的出现和快速发展,交通大数据已经成为基础性资源,涵盖了大量的敏感信息,此类信息一旦泄露被非法使用,将给用户的安全带来巨大威胁。交通大数据平台用于采集、管理交通大数据,获得了大量交通信息数据,因此存在信息丢失与泄露、被不法分子非法访问、恶意攻击等风险。文章分析了交通大数据平台中存在的安全隐患,对交通大数据平台中的安全系统建设进行了深入探究,基于纵深防御体系原理,提出了包括物理安全、网络安全、数据安全、
随着大数据时代的到来,海量数据出现在人们眼前。从冗杂的信息中快速获取满足人们个性化需求的数据成为了一个棘手的问题,推荐算法是解决此类问题的有力工具。针对移动电商平台中信息量较大,人们难以快速获得所需信息的问题,提出了一种融合内容与协同过滤的混合推荐算法。该算法先利用基于LFM的协同过滤算法产生推荐结果;当面临向新用户或新物品进行推荐时,再利用基于内容的推荐算法产生推荐结果。采用级联的方式将两种推荐算法进行混合,在一定程度上缓解了用户冷启动问题、物品冷启动问题及数据稀疏问题,克服了单一算法的局限性。实验证明