POKD-tree:一种有效的SIFT图像特征点匹配方法

来源 :计算机工程与应用 | 被引量 : 5次 | 上传用户:fengxun1985
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
为解决SIFT算法计算复杂,且算法效率不高的问题,提出了POKD-tree算法(分区优化kd树搜索算法)。首先,利用SIFT算法提取图像的特征点,以图像特征点集在X和Y方向中跨度最大的方向为分区直线的方向,计算图像特征点集的质心,用通过质心的分区直线来进行图像分区;采用欧式距离对图像进行特征点匹配,首先进行对应搜索匹配,同时为了解决分区误差,在进行对应搜索之后再进行交叉搜索。通过实验证明,POKD-tree算法在匹配的效率上要优于BBF算法和RKD-tree算法。
其他文献
针对独立矢量分析(IVA)算法初始分离矩阵取值对分离性能影响较大的局限性,提出了基于回溯搜索优化的卷积混合语音盲分离算法。采用频域各频率点IVA分离信号的复数峭度和作为目标
面对特定数据归约方案,不同的用户对归约效果具有不同的评价,针对目前数据归约效果评估方法缺乏针对性、忽视用户个性化需求的问题,基于现有的指标体系,提出基于用户兴趣度的数据
为了解决方言辨识系统中训练样本冗余的问题,提出了一种融合多样性测度的汉语方言主动辨识方法。利用SVM分类器选取不确定性的样本。根据样本间分布情况的测度算法,选取出兼具