论文部分内容阅读
提出了基于分布估计算法的模糊分类建模方法,该方法基于Apriori原理生成初始模糊规则集,并且以匹茨堡型的二进制编码方式对模糊规则集编码,基于双变量相关的MIMIC(mutual information maximization for input clustering)分布估计算法从初始规则集中自动抽取模糊规则。通过在Iris,Pima,Wine这3个标准数据集的仿真实验表明,该方法比基于遗传算法的模糊分类器在准确率和解释性方面更有效。