论文部分内容阅读
经典的基于对象精确数学模型的PID控制方法的自适应性较差,难以适应具有非线性、时变不确定性的被控对象.神经网络控制算法的稳定性又受到迭代初值的影响,且算法复杂.为此提出了一种基于RBF神经网络的、结构简单的、稳定的PID直接自适应控制方法.讨论了控制器参数迭代初值选取的基本原则,并给出了在保证系统稳定性前提下参数的迭代算法.仿真研究结果表明,该方法的鲁棒性和跟踪性能均优于经典PID方法.