论文部分内容阅读
DNA methylation is an important epigenetic regulation mechanism, which is catalyzed by DNA methyltransferases. In this study, eight DNA methyltransferase genes were identified in grape genome to analyze the selective pressure, gene expression and codon usage bias. The results showed grape DNA methyltransferase MET subfamily underwent relatively strong purifying selection during evolution, while chromomethylase CMT subfamily underwent positive selection during evolution. Under different abiotic(heat, drought or cold) stresses, the expression level of many grape DNA methyltransferase genes changed significantly. The expression level of these genes might be related with cis-regulatory elements of their promoters. The results of codon usage bias analysis showed that synonymous codon bias existed in grape DNA methyltransferase gene family, which might be affected by mutation pressure. These results laid a solid foundation for in-depth study of DNA methyltransferases in grape.
DNA methylation is an important epigenetic regulation mechanism, which is catalyzed by DNA methyltransferases. In this study, eight DNA methyltransferase genes were identified in grape genome to analyze the selective pressure, gene expression and codon usage bias. The results showed grape DNA methyltransferase MET subfamily Under different abiotic (heat, drought or cold) stresses, the expression level of many grape DNA methyltransferase genes changed significantly. The expression level of these genes might be related with cis-regulatory elements of their promoters. The results of codon usage bias analysis showed that synonymous codon bias existed in grape DNA methyltransferase gene family, which might be affected by mutation pressure. These results laid a solid foundation for in-depth study of DNA methyltransferases in grape.