论文部分内容阅读
摘要:以太网技术的发展和成熟,以及计算机性能和应用需求的增长推动了对三层全千兆路由交换机的应用。本文介绍了用盛科网络公司的核心芯片为主芯片设计及实现的三层全千兆路由交换机,描述了交换机的各功能模块的设计和实现的功能,同时对交换机的性能指标进行测试。本文网络版地址:http://wxvw.eepw.e om.cn/article/2777 11.htm
关键词:虚拟局域网;虚拟路由冗余协议;第三层(L3)路由
引言
交换技术与快速以太网的结合对网络服务器和园区主干网施加了更大的压力,千兆以太网的高速度大大提升了网络速率。而交换和路由相结合的第三层交换技术使交换机既可完成端口全线速交换功能,又可以完成部分路由器的路由功能,使路由性能显著增强的同时明显降低路由成本。本文介绍了用盛科网络有限公司自主开发的核心芯片为主芯片设计的三层全千兆路由交换机,是针对用户对三层至多层交换的需求而设计的一款高性能干兆智能交换机。该交换机具有灵活的端口配置、丰富的二层交换、三层路由、服务质量管理等功能,满足城域以太网核心层/汇聚层不同性能的多业务承载需要,同时针对无线接入网络(RAN)满足2G/3G/LTE不同阶段网络承载需求,实现多业务统一承载的平滑演进。
1 系统介绍
本交换机采用核心交换(Humber)芯片和物理层(PHY)芯片分离的结构,主要由Humb er交换系统、CPU管理系统和电源时钟系统组成,系统总体框如图1所示。其中Humber交换系统采用的芯片是盛科网络有限公司自主开发的核心交换芯片CTC6048 (Humber)和MARVELL公司4口千兆PHY芯片88E1340。提供了24个lO/lOO/lOOOBase-TX自适应电接口和4个lOOOBase-X光接口,实现全线速、无阻塞网络传输。并可根据用户的需要调整设备接口数量。
本交换机特性如下:
1.基于高性能芯片实现Qo S能力,基于端口设定优先级,也可以针对不同协议制定优先级(IEEE802.lp),采用灵活队列分级调度技术和拥塞管理,具有低延迟、低抖动特性、确保重要业务不受延迟或丢弃,同时保证网络的高效运行。
2.支持虚拟局域网(VLAN,IEEE802.1Q),最多支持4096个VLAN,有效降低搬迁、增加和改变网络节点的管理负担,以及将网络广播业务流限制在VLAN内,控制流量和抑制广播风暴的产生。
3.支持生成树(STP)协议,与其它路由器协同工作并防止网络中循环的出现。
4.支持以太网OAM功能,可以简化网络操作,检验网络性能和降低网络运行的成本,完成日常网络和业务的分析、预测、规划和配置工作。
5.支持网络管理SNMP vl/v2/v3及RM ON,通过集中的网管软件提供全面的带内管理,可通过Console或Telnet提供方便易用的命令行配置界面。配置文件可通过TFTP程序进行上传和下载,极大地方便用户的使用。可通过WEB方式进行管理,降低对维护人员的要求,简化了网络管理的工作量。
6.同时支持IPv4/IPv6、多种隧道和多播协议,保证各种业务的灵活部署,为用户节约成本。
2 系统硬件实现
2.1 Humber交换系统
Humber交换系统是本交换机的核心电路。该电路由Humber交换模块、GE物理层模块和接口电路组成。主要完成以太网数据帧的全线速第二层(L2)交换(桥接)、第三层(L3)IPv4/6单播和组播路由、地址学习和老化、虚拟局域网(VLAN)、生成树、虚拟路由冗余协议(VRRP)、Qos等功能。
2.1.1
Humber交换模块
Humber交换模块主要是由CTC6048交换芯片实现,该芯片是一款低成本高集成高性能包处理芯片,其工作频率达到575MHz;数据位宽达到256bits,提供更高的带宽处理能力:具有完整的IPv4/IPv6协议栈,并支持多种IP v4/IP v6隧道和IVI等地址转换技术:丰富的MPLS特性;基于硬件的OAM机制,包括IEEE802.lag和ITU-T Y1731;支持基于G.8031/G.8032标准的快速保护切换(APS),切换时间小于50ms;在服务质量方面,支持可配置的QOS;内置IEEE 1588v2和同步以太网功能:内部集成TCAM和SRAM,具备L2/L3/MPLS/Metro特性,满足更低成本应用的要求:提供48个具备全线速交换的串行千兆比特媒体无关接口(SGMII),也可以配置成4个10GE接口,可在-45℃~+85℃宽温范围内稳定工作。芯片功能框图如图2所示。
2.1.2 GE物理层模块
GE物理层模块采用88E1340 PHY芯片,与Humber交换模块之间通过SGMII接口互连。严格遵循IEEE802.3x标准,包括PMD,PMA,PCS子层。执行PAM3、8B/10B、4B/5B、M LT-3、NRZI、Manchester编码/解码、数字时钟恢复,数字自适应均衡的接收器,发射器脉冲整形,自动协商等管理功能。其内部集成了4个独立的千兆以太网收发器,完成10BASET、100BASE-TX和1000BASE-T以太网的所有物理层功能。可提供4个物理层接口和4个SGMII接口。并集成了MDI接口的终端电阻器和电容器到PHY中。由此减少了外围电路所需的器件,简化了电路板布局,降低了电路板的费用。采用的Marvell校准电阻器方案达到并超过IEEE 802.3回波损耗规格的精度要求。
2.1.3接口电路
本交换机的接口电路包括电接口电路和光接口电路。电接口电路主要由以太网变压器及其外围电路组成。完成物理层接口到用户接口之间的对接功能。用户接口与以太网变压器之间用非屏蔽5类双绞(CAT5)线缆连接:光接口电路由光模块及其外围匹配电路组成。它直接与Humber交换模块的SGMII接口连接。完成SGMII接口到用户千兆以太网光接口的转化功能。当SGMII接口与光模块连接时,是作为SERDES使用的,接口速率为1.25 Gbit/s,因此选择具有相同速率、可热插拔的SFP封装的光收发模块。 2.2 CPU管理系统
CPU管理系统采用了Freescale公司的32位高速CPU芯片(MC68360),完成交换芯片的初始化,交换芯片与CPU之间的通信,物理层、数据链路层及网络层的功能管理,数据包过滤以及完成生成树协议、路由学习等功能。系统包括存储模块、复位电路和管理配置接口等。CPU芯片通过PCI总线来控制和管理Humber, PCI接口电平为3.3V。其中存储模块包括DDR和FLASH:DDR提供CPU高速运行的存储空间,FLASH用于在断电的情况下对程序和配置信息进行保存,保证掉电后的数据信息不丢失。
2.3电源时钟系统
一个稳定、可靠的产品,高效的电源和精准的时钟是必不可少的重要组成部分。
2.3.1时钟电路设计
本交换机采用高精度的温补晶体振荡器作为时钟源,晶体振荡器频率为25MHz和50MHz,频率准确度为±0.5ppm,晶体振荡器输出稳定的时钟后,通过时钟处理电路进行缓冲和倍频后提供给各功能单元。电路设计框图如图3所示。
2.3.2系统电源设计
系统电源采用二次电源转换的方案实现。首先由高性能的AC-DC线性电源模块变换出所需的DC+12V,进入电源时序控制电路,按系统要求的时序控制输出12V电压,提供给各DC-DC模块,使其变换输出各功能单元需要的直流电压:0.9V、1.05V、1.2V、1.5V,1.8V、2.5V、3.3V等。
在PCB设计中,特别采取了滤波措施。如:在电源输入端,进行Ⅱ型滤波,防止外部干扰信号通过电源耦合进入设备,同时也防止了设备本身产生的信号干扰其它设备:在AC-DC电源模块输入处连接大容量的电解电容,形成旁路滤波,主要是低频滤波,并连接多个lOOnF的电容进行高频滤波:在DC-DC模块周边进行大面积铺地来降低阻抗:在各芯片电源引脚处连接lOOnF的滤波电容,并且电容和芯片引脚的连线尽可能短。电源设计框图如图4所示。
3 系统软件架构
系统软件采用模块化分层的设计方法实现,主要完成对本交换机的配置管理工作,如交换机的上电初始化和对Humber交换模块、PHY模块的配置。提供专用管理接口对系统进行配置,也可通过WEB网页形式登录进行配置管理。系统软件设计框图如图5所示。
交换机的操作系统采用基于Windows平台的应用程序,即窗体应用程序,并集成了TCP/IP协议。
扩展接口(API)提供许多编程接口,便于二次开发,API还提供了与交换芯片、PHY芯片等的接口。
业务组件提供各种系统服务。
控制组件为管理模块提供接口,控制交换芯片的工作,保存配置信息等。
管理组件提供用户接口,用户通过该接口管理交换机,可通过命令行或WEB方式管理本交换机。
4 性能测试情况
利用专用以太网测试仪(XM12)对本交换机的主要项目指标进行测试。其中,端口1至24是电接口,用双绞线缆连接到测试仪:端口25至28是光接口,用单模光纤连接器连接到测试仪。测试时,将交换机组合同时互发测试数据包,共组成14组测试组合。在实验室测试时,我们进行了多种组合方案的测试,取得了预期的效果。仅列其中一种组合方案的性能指标测试结果,详见表1。
5 结束语
本文对以盛科网络有限公司自主开发的核心芯片为主芯片设计的三层全千兆路由交换机进行了全面介绍,并对交换机的性能指标进行了测试。小批量投产后,可应用于包括IPTV、VoIP. High-speed Internet Access.VPN等以太网业务,满足园区网和企业网汇聚、数据中心千兆接入以及企业千兆到桌面的应用。较传统路由器,该交换机有明显的优势,具有更广阔的应用前景。
关键词:虚拟局域网;虚拟路由冗余协议;第三层(L3)路由
引言
交换技术与快速以太网的结合对网络服务器和园区主干网施加了更大的压力,千兆以太网的高速度大大提升了网络速率。而交换和路由相结合的第三层交换技术使交换机既可完成端口全线速交换功能,又可以完成部分路由器的路由功能,使路由性能显著增强的同时明显降低路由成本。本文介绍了用盛科网络有限公司自主开发的核心芯片为主芯片设计的三层全千兆路由交换机,是针对用户对三层至多层交换的需求而设计的一款高性能干兆智能交换机。该交换机具有灵活的端口配置、丰富的二层交换、三层路由、服务质量管理等功能,满足城域以太网核心层/汇聚层不同性能的多业务承载需要,同时针对无线接入网络(RAN)满足2G/3G/LTE不同阶段网络承载需求,实现多业务统一承载的平滑演进。
1 系统介绍
本交换机采用核心交换(Humber)芯片和物理层(PHY)芯片分离的结构,主要由Humb er交换系统、CPU管理系统和电源时钟系统组成,系统总体框如图1所示。其中Humber交换系统采用的芯片是盛科网络有限公司自主开发的核心交换芯片CTC6048 (Humber)和MARVELL公司4口千兆PHY芯片88E1340。提供了24个lO/lOO/lOOOBase-TX自适应电接口和4个lOOOBase-X光接口,实现全线速、无阻塞网络传输。并可根据用户的需要调整设备接口数量。
本交换机特性如下:
1.基于高性能芯片实现Qo S能力,基于端口设定优先级,也可以针对不同协议制定优先级(IEEE802.lp),采用灵活队列分级调度技术和拥塞管理,具有低延迟、低抖动特性、确保重要业务不受延迟或丢弃,同时保证网络的高效运行。
2.支持虚拟局域网(VLAN,IEEE802.1Q),最多支持4096个VLAN,有效降低搬迁、增加和改变网络节点的管理负担,以及将网络广播业务流限制在VLAN内,控制流量和抑制广播风暴的产生。
3.支持生成树(STP)协议,与其它路由器协同工作并防止网络中循环的出现。
4.支持以太网OAM功能,可以简化网络操作,检验网络性能和降低网络运行的成本,完成日常网络和业务的分析、预测、规划和配置工作。
5.支持网络管理SNMP vl/v2/v3及RM ON,通过集中的网管软件提供全面的带内管理,可通过Console或Telnet提供方便易用的命令行配置界面。配置文件可通过TFTP程序进行上传和下载,极大地方便用户的使用。可通过WEB方式进行管理,降低对维护人员的要求,简化了网络管理的工作量。
6.同时支持IPv4/IPv6、多种隧道和多播协议,保证各种业务的灵活部署,为用户节约成本。
2 系统硬件实现
2.1 Humber交换系统
Humber交换系统是本交换机的核心电路。该电路由Humber交换模块、GE物理层模块和接口电路组成。主要完成以太网数据帧的全线速第二层(L2)交换(桥接)、第三层(L3)IPv4/6单播和组播路由、地址学习和老化、虚拟局域网(VLAN)、生成树、虚拟路由冗余协议(VRRP)、Qos等功能。
2.1.1
Humber交换模块
Humber交换模块主要是由CTC6048交换芯片实现,该芯片是一款低成本高集成高性能包处理芯片,其工作频率达到575MHz;数据位宽达到256bits,提供更高的带宽处理能力:具有完整的IPv4/IPv6协议栈,并支持多种IP v4/IP v6隧道和IVI等地址转换技术:丰富的MPLS特性;基于硬件的OAM机制,包括IEEE802.lag和ITU-T Y1731;支持基于G.8031/G.8032标准的快速保护切换(APS),切换时间小于50ms;在服务质量方面,支持可配置的QOS;内置IEEE 1588v2和同步以太网功能:内部集成TCAM和SRAM,具备L2/L3/MPLS/Metro特性,满足更低成本应用的要求:提供48个具备全线速交换的串行千兆比特媒体无关接口(SGMII),也可以配置成4个10GE接口,可在-45℃~+85℃宽温范围内稳定工作。芯片功能框图如图2所示。
2.1.2 GE物理层模块
GE物理层模块采用88E1340 PHY芯片,与Humber交换模块之间通过SGMII接口互连。严格遵循IEEE802.3x标准,包括PMD,PMA,PCS子层。执行PAM3、8B/10B、4B/5B、M LT-3、NRZI、Manchester编码/解码、数字时钟恢复,数字自适应均衡的接收器,发射器脉冲整形,自动协商等管理功能。其内部集成了4个独立的千兆以太网收发器,完成10BASET、100BASE-TX和1000BASE-T以太网的所有物理层功能。可提供4个物理层接口和4个SGMII接口。并集成了MDI接口的终端电阻器和电容器到PHY中。由此减少了外围电路所需的器件,简化了电路板布局,降低了电路板的费用。采用的Marvell校准电阻器方案达到并超过IEEE 802.3回波损耗规格的精度要求。
2.1.3接口电路
本交换机的接口电路包括电接口电路和光接口电路。电接口电路主要由以太网变压器及其外围电路组成。完成物理层接口到用户接口之间的对接功能。用户接口与以太网变压器之间用非屏蔽5类双绞(CAT5)线缆连接:光接口电路由光模块及其外围匹配电路组成。它直接与Humber交换模块的SGMII接口连接。完成SGMII接口到用户千兆以太网光接口的转化功能。当SGMII接口与光模块连接时,是作为SERDES使用的,接口速率为1.25 Gbit/s,因此选择具有相同速率、可热插拔的SFP封装的光收发模块。 2.2 CPU管理系统
CPU管理系统采用了Freescale公司的32位高速CPU芯片(MC68360),完成交换芯片的初始化,交换芯片与CPU之间的通信,物理层、数据链路层及网络层的功能管理,数据包过滤以及完成生成树协议、路由学习等功能。系统包括存储模块、复位电路和管理配置接口等。CPU芯片通过PCI总线来控制和管理Humber, PCI接口电平为3.3V。其中存储模块包括DDR和FLASH:DDR提供CPU高速运行的存储空间,FLASH用于在断电的情况下对程序和配置信息进行保存,保证掉电后的数据信息不丢失。
2.3电源时钟系统
一个稳定、可靠的产品,高效的电源和精准的时钟是必不可少的重要组成部分。
2.3.1时钟电路设计
本交换机采用高精度的温补晶体振荡器作为时钟源,晶体振荡器频率为25MHz和50MHz,频率准确度为±0.5ppm,晶体振荡器输出稳定的时钟后,通过时钟处理电路进行缓冲和倍频后提供给各功能单元。电路设计框图如图3所示。
2.3.2系统电源设计
系统电源采用二次电源转换的方案实现。首先由高性能的AC-DC线性电源模块变换出所需的DC+12V,进入电源时序控制电路,按系统要求的时序控制输出12V电压,提供给各DC-DC模块,使其变换输出各功能单元需要的直流电压:0.9V、1.05V、1.2V、1.5V,1.8V、2.5V、3.3V等。
在PCB设计中,特别采取了滤波措施。如:在电源输入端,进行Ⅱ型滤波,防止外部干扰信号通过电源耦合进入设备,同时也防止了设备本身产生的信号干扰其它设备:在AC-DC电源模块输入处连接大容量的电解电容,形成旁路滤波,主要是低频滤波,并连接多个lOOnF的电容进行高频滤波:在DC-DC模块周边进行大面积铺地来降低阻抗:在各芯片电源引脚处连接lOOnF的滤波电容,并且电容和芯片引脚的连线尽可能短。电源设计框图如图4所示。
3 系统软件架构
系统软件采用模块化分层的设计方法实现,主要完成对本交换机的配置管理工作,如交换机的上电初始化和对Humber交换模块、PHY模块的配置。提供专用管理接口对系统进行配置,也可通过WEB网页形式登录进行配置管理。系统软件设计框图如图5所示。
交换机的操作系统采用基于Windows平台的应用程序,即窗体应用程序,并集成了TCP/IP协议。
扩展接口(API)提供许多编程接口,便于二次开发,API还提供了与交换芯片、PHY芯片等的接口。
业务组件提供各种系统服务。
控制组件为管理模块提供接口,控制交换芯片的工作,保存配置信息等。
管理组件提供用户接口,用户通过该接口管理交换机,可通过命令行或WEB方式管理本交换机。
4 性能测试情况
利用专用以太网测试仪(XM12)对本交换机的主要项目指标进行测试。其中,端口1至24是电接口,用双绞线缆连接到测试仪:端口25至28是光接口,用单模光纤连接器连接到测试仪。测试时,将交换机组合同时互发测试数据包,共组成14组测试组合。在实验室测试时,我们进行了多种组合方案的测试,取得了预期的效果。仅列其中一种组合方案的性能指标测试结果,详见表1。
5 结束语
本文对以盛科网络有限公司自主开发的核心芯片为主芯片设计的三层全千兆路由交换机进行了全面介绍,并对交换机的性能指标进行了测试。小批量投产后,可应用于包括IPTV、VoIP. High-speed Internet Access.VPN等以太网业务,满足园区网和企业网汇聚、数据中心千兆接入以及企业千兆到桌面的应用。较传统路由器,该交换机有明显的优势,具有更广阔的应用前景。