拉格朗日中值定理应用浅析

来源 :旅游纵览(下半月) | 被引量 : 0次 | 上传用户:CYQWWL
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
拉格朗日中值定理是微分学的基础定理之一,很多时候我们可以借助其研究导数的性质,从而加深对函数在整个定义域区间上的整体认识.本文讨论定理在证明函数一致连续性、有界性和单调性时的应用。因为拉格朗日中值定理沟通了函数与其导数的联系,很多时候我们可以借助其导数,研究函数的性质,从而加深对函数在整个定义域区间上的整体认识.比如研究函数在区间上的一致连续性,单调性,有界性等,都可能用到拉格朗日中值定理的结论.通过对函数局部性质的研究把握整体性质,这是数学研究中一种重要的方法。一、证明函数一致连续性例1证明若函数f(x)于有穷或无穷的区间(a,b)内有有界的导 Lagrange’s median theorem is one of the basic theorems of differential theory, and many times we can use it to study the properties of derivatives, so as to deepen the overall understanding of the function over the entire domain of definition. This paper discusses the theorem in proving the consistent function , Boundedness and monotonicity of the application. Because the Lagrange median theorem communicates the connection of a function with its derivative, we often use it’s derivatives to study the properties of the function, thereby deepening the overall understanding of the function over the entire domain of the definition. For example, Uniform continuity, monotonicity, boundedness and so on, may conclude that Lagrange’s median theorem can be used.According to the study of the local properties of the function, the overall property is grasped, which is an important method in mathematical research. First, the proof function is consistent with continuity Example 1 proves that if the function f (x) in a finite or infinite range (a, b) has a bounded guide
其他文献
过去廿五年中,光学工程和光学设计从个人略带直观的方法,发展到今天的高度完善的方法。电光学领域的迅速发展对本学科有强烈的影响,并在今后几年内很可能使光学工程中的许多