论文部分内容阅读
关联规则挖掘搜索给定数据集中反复出现的数据模式,找到它们之间的相关性。分析了经典Apriori算法存在的时空效率低的缺点和数据形式对算法效率的影响。提出一种基于动态散列和事务压缩技术的改进,动态应用散列技术减小候选频繁项集的规模和数据库扫描次数,应用事务压缩技术缩小数据库中事务量的长度和总数,从而提高了算法的时间空间效率。与Apriori算法进行的比较验证了新算法的正确性与效率。