论文部分内容阅读
Influx of Ca2- via Ca2+ channels is the major step triggering exocytosis of pituitary somatotropes to release growth hormone (GH). Voltage-gated Ca2+ and K+ channels, the primary determinants of the influx of Ca2+ in somatotropes, are regulated by GH-releasing hornone (GHRH) and somatostatin (SRIF) through G protein-coupled signalling systems. Using whole-cell patch-clamp techniques, the changes of the Ca2+ and K+ currents in primary cultured somatotropes were recorded and signalling systems were studied using pharmacological reagents and intracellular dialysis of non-permeable molecules including antibodies and antisense oligonucleotides. GHRH increased both L-and T-types Ca2+ currents and decreased transient (I4) and delayed rectified (Ik) K+ currents. The increase in Ca2+ currents by GHRH was mediated by cAMP/protein kinase A system but the decrease in K+ currents required normal function of protein kinase C system. The GHRH-induced alteration of Ca2+ and K+ currents augments the influx of Ca2+ , leading to an increase in the [ Ca2+ ]i and the GH secretion. In contrary, a significant reduction in Ca2+ currents and increase in K currents were obtained in response to SRIF. The ion channel response to SRIF was demonstrated as a membrane delimited pathway and can be recorded by classic whole-cell configuration, Intracellular dialysis of anti-αi3 antibodies attenuated the increase in K + currents by SRIF whereas anti-αo antibodies blocked the reduction in the Ca2+ current by SRIF. Dialysis of antisense oligonucleotides specific for αo2 sub-units also attenuated the inhibition of SRIF on the Ca2+current. The Gi3 protein mediated the increase in K + currents and the Go2 protein mediated the reduction in the Ca2 +current by SRIF. The SRIF-induced alteration of Ca2 + and K + currents diminished the influx of Ca2+ , leading to a decrease in the [ Ca2+ ]i and the GH secretion. It is therefore concluded that multiple signalling systems are employed in the ion channel response to GHRH or SRIF in somatotropes, which leads to an increase or decrease in the GH secretion.