论文部分内容阅读
提出一种应用于回归问题,以分类回归树为基学习器,并综合Boosting和Bagging算法的特点,利用变相似度聚类技术和贪婪算法来进行选择性集成学习的算法——SER-BagBoosting Trees算法。将其与几种常用的机器学习算法进行比较研究,得出该算法往往比其他集成学习算法具有更好的泛化性能和更高的运行效率。