论文部分内容阅读
基于实例的机器翻译系统EBMT都需要有一个非常大的实例模式库,其数量级通常在百万句对以上.因此,如何从中快速地选择出一定数量的与待翻译的输入句子比较相似的候选实例,提供给后续句子相似度计算、类比译文构造等模块作进一步的处理,是EBMT系统所必须解决的一大难题.文章基于句子的词表层特征和信息熵提出了一种多层次候选实例模式检索算法,通过在多策略机器翻译系统IHSMTS上的运行测试,结果表明该算法较好的解决了这一难题.