论文部分内容阅读
针对新型混沌蚁群优化算法(CAS)求解高维优化问题时存在的计算复杂和搜索精度低问题,提出了扰动混沌蚂蚁群(DCAS)算法。通过建立蚂蚁最佳位置更新贪婪规则和随机邻居选择方法有效地降低了计算复杂度;另外引入自适应扰动策略改进CAS算法,使蚂蚁增强局部搜索能力,提高了原算法的搜索精度。通过一组高维测试函数对DCAS算法的性能进行了高达1 000维的仿真实验。测试结果表明,新算法对复杂的高维优化问题可行有效。