论文部分内容阅读
在光子晶体光纤典型的空气孔三角形排布图案中,将每个空气孔替换为一对孪生空气孔对,孪生空气孔对之间有确定的间距和固定的轴向,并由其形成包层的基本单元.在端面中心位置缺失一孪生空气孔对,由高折射率的背景材料将光场束缚于此形成纤芯.在包层中所有的孪生空气孔对按照三角形规则均匀排列.在这种新型结构中,由于所有孪生空气孔对都具有相同轴向而使得两个正交方向上的折射率不对称,从而导致双折射效应.本文利用有限差分法进行数值计算,所设计孪生空气孔对光子晶体光纤在两个正交方向上的折射率差Δneff可达到10-4.孪生空气孔对结构参量可在一定程度上影响双折射效果,增大空气孔或减小孪生空气孔对内部间距都可在一定程度上增大双折射效应.
In a typical air-hole triangular arrangement of photonic crystal fibers, each air hole is replaced by a pair of twin air-hole pairs with a defined spacing and a fixed axial direction between the pairs of twin air holes, Of the basic unit in the center of the end of the absence of a twin hole pairs of air, the high refractive index of the background material will be bound to the light field to form the core in the cladding in the twin air holes in accordance with the rules of the triangle uniformly arranged in In the new structure, the birefringence effect is caused by the asymmetry of the refractive index in the two orthogonal directions because all the twin air holes have the same axial direction.In this paper, the finite difference method is used to calculate the numerical value of the twin air holes The refractive index difference Δneff of the photonic crystal fiber in two orthogonal directions may reach 10-4. The twin air holes may affect the birefringence effect to a certain extent on the structural parameters, increase the air holes or reduce the size of the twin air holes to the inner part Pitch can be increased to a certain extent birefringence effect.