论文部分内容阅读
基于机器学习的超分辨方法是一个很有发展前景的单幅图像超分辨方法,稀疏表达和字典学习是其中的研究热点。针对比较耗时的字典训练与恢复精度不高图像重建,从减小低分辨率(LR)和高分辨率(HR)特征空间之间差异性的角度提出了一种使用迭代最小二乘字典学习算法(ILS-DLA),并使用锚定邻域回归(ANR)进行图像重建的单幅图像超分辨算法。迭代最小二乘法的整体优化过程极大地缩短了低分辨字典/高分辨字典的训练时间,它采用了与锚定邻域回归相同的优化规则,有效地保证了字典学习和图像重建在理论上的一致性。实验结果表明,所提算