论文部分内容阅读
针对传统增强型蚁群算法容易出现早熟和停滞现象的缺陷,提出一种多信息素的蚁群算法(MPAS),并以TSPLIB的数据为例对该算法进行实验测试.MPAS算法将信息素分为局部和全局两种不同的信息素,在搜索过程中,对局部和全局信息素采用不同的更新策略和动态的路径选择概率,使得在搜索的中后期能更有效地发现全局最优解.在中大型问题上MPAS算法有着更好的发现最优解的能力.