论文部分内容阅读
在分类器训练过程中,无标记数据的引入容易产生噪音,从而降低分类精度。为此,提出一种基于图的置信度估计半监督协同训练算法。利用样本数据自身的结构信息,计算无标记样本所属类别概率。采用多分类器对无标记数据进行置信度估计,以提高无标记数据挑选标准,减少噪音数据的引入。在UCI数据集上的对比实验验证了该算法的有效性。