论文部分内容阅读
提取辣椒叶片的25个叶绿素荧光图像的特征参数,其中18个特征参数与氮含量呈极显著相关(P<0.01)。用主成分分析法(PCA)提取主要特征参数,将其结果作为遗传算法优化的反向传播人工神经网络(BPNN)、广义回归神经网络(GRNN)和多元线性回归(MLR)模型的输入变量,分别建立辣椒叶片氮含量的预测模型,建模集的相关系数分别为0.9592、0.9633、0.9435,预测集的相关系数分别为0.9145、0.8213、0.7741。