论文部分内容阅读
频繁项集挖掘算法是数据挖掘的主要研究方向。目前主流的频繁项集挖掘算法有:产生候选频繁项集和不产生候选频繁项集两种,分别是Apdori算法、FP_growth算法。这两种算法各有优缺点。本文在分析现有算法的基础上,充分利用FP_tree信息压缩的优点,设计出一种产生候选项集的最大频繁项集挖掘算法。该算法首先构造一棵单向FP_tree,再利用最大频繁项集特性对候选项集进行剪枝,不需要扫描数据库计算候选项集的支持数。仿真实验表明,与现有算法相比,该算法的时、空效率都有巨大提高。