论文部分内容阅读
针对弹道目标微动分类前需平动补偿及典型雷达散射截面积(radar cross-section,RCS)序列分类需构造人工特征的问题,提出利用弹道目标微动特性和RCS相结合的弹道目标智能分类算法。首先,建立弹道目标运动模型并分析得到方位角和俯仰角,从而获取RCS序列,在此基础上利用小波变换得到时频图并构建数据集;然后,通过卷积神经网络(convolutional neural network,CNN)提取时频图像特征序列并与RCS序列融合成高维特征;最后,利用具有容错能力的双向长短期记忆网络充分学习序