论文部分内容阅读
Internal waves are one of the primary causes of sea water mass variations in shallow water. The time stability of an acoustic channel may be degraded by the activities of internal waves. Based on the oceanographic data of Asian Seas International Acoustics Experiment (ASIAEX), the characteristics of the internal waves in the East China Sea (ECS) are analyzed and the effects of linear and solitary internal waves on broadband acoustic field correlation are numerically investigated. The numerical results of the length of the correlation time affected by the internal waves are compared with the experimental data. It was found that the existence of both linear internal waves and soliton packets may be one of the explanations of the experimental correlation drop.
Internal waves are one of the primary causes of sea water mass variations in shallow water. The time stability of an acoustic channel may be degraded by the activities of internal waves. Based on the oceanographic data of Asian Seas International Acoustics Experiment (ASIAEX), the characteristics of the internal waves in the East China Sea (ECS) are analyzed and the effects of linear and solitary internal waves on broadband acoustic field correlation are numerically investigated. The numerical results of the length of the correlation time affected by the internal waves are compared with the experimental data. It was found that the existence of both linear internal waves and soliton packets may be one of the explanations of the experimental correlation drop.