Applying machine learning approaches to improving the accuracy of breast-tumour diagnosis via fine n

来源 :Journal of Chongqing University(English Edition) | 被引量 : 0次 | 上传用户:qwertcbt
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Diagnosis and treatment of breast cancer have been improved during the last decade; however, breast cancer is still a leading cause of death among women in the whole world. Early detection and accurate diagnosis of this disease has been demonstrated an approach to long survival of the patients. As an attempt to develop a reliable diagnosing method for breast cancer, we integrated support vector machine (SVM), k-nearest neighbor and probabilistic neural network into a complex machine learning approach to detect malignant breast tumour through a set of indicators consisting of age and ten cellular features of fine-needle aspiration of breast which were ranked according to signal-to-noise ratio to identify determinants distinguishing benign breast tumours from malignant ones. The method turned out to significantly improve the diagnosis, with a sensitivity of 94.04%, a specificity of 97.37%, and an overall accuracy up to 96.24% when SVM was adopted with the sigmoid kernel function under 5-fold cross validation. The results suggest that SVM is a promising methodology to be further developed into a practical adjunct implement to help discerning benign and malignant breast tumours and thus reduce the incidence of misdiagnosis. Diagnosis and treatment of breast cancer have been improved during the last decade; however, breast cancer is still a leading cause of death among women in the whole world. Early detection and accurate diagnosis of this disease has been demonstrated an approach to long survival of the patients. As an attempt to develop a reliable diagnostic method for breast cancer, we integrated support vector machine (SVM), k-nearest neighbor and probabilistic neural network into a complex machine learning approach to detect malignant breast tumor through a set of indicators consisting of age and ten cellular features of fine-needle aspiration of breast which were ranked according signal-to-noise ratio to identify determinants distinguishing benign breast tumors from malignant ones. The method turned out to significantly improve the diagnosis, with a sensitivity of 94.04% , a specificity of 97.37%, and an overall accuracy up to 96.24% when SVM was adopted with the sigmoid kernel function under 5- fold cross validation. The results suggest that SVM is a promising methodology to be further developed into a practical adjunct implement to help discerning benign and malignant breast tumors and thus reduce the incidence of misdiagnosis.
其他文献
我公司配置有德国赐来福公司生产的Auto-coro312型转杯纺纱机,在使用中发现:有时开机时一节或多节(整机共13节)机身下的G200开关电源不能正常启动;纱锭红色指示灯不是常亮,而
随着经济的发展和社会的进步,人们对高质量生活的需求越来越大,体育锻炼和运动的方式在不断的更新;其中,网球运动是非常重要的一个组成部分,通过网球运动的开展,使青少年课余
现代教育的发展已经不再是对知识和技能的培养,而是通过对学生的意识培养尤其是创新意识来提高学生知识与技能的吸收.创新一直是我国经济发展、教育发展、国防发展中重点提倡
在2016年1月,《农经》主办了首届中国农业企业领袖年会,为中国农业企业家提供了一个合作和交流的平台,获得了全行业的普遍认可。正是这样的认同,成为我们把农业企业领袖年会继续办下去的强大动力。  这些年来,《农经》一直倡导通过新闻媒体的力量来推动农业产业的发展。依据这个理念,《农经》在2016年开始由传统的农业财经媒体转型为农业产业服务平台。2016年1月,为发挥农业媒体平台作用,推动行业交流与合作
期刊
矿山通常采用水力或风力充填或废石充填,这些方法虽有其优点但也有局限性。在联邦德国和芬兰已成功地使用皮带抛掷车抛掷充填以取代这些传统方法,实践证明,此法是有效、经济
物理属于自然学科,同时也是初中生对世界加以认识的重要途径.而在初中生进行学习期间,对其物理兴趣加以激发十分重要.一般来说,初中生都拥有好奇心理,对自然界当中的各种现象
玉米株高和穗位的遗传分析王金君,姜明月,陈玉库,张丽颖罗新兰(辽宁省农科院玉米所110161)(沈阳农业大学农学系110161)当前,理想株型已成为玉米育种的主要目标之一,因此研究构成株型各性状的遗传规
化学元素周期表是高中化学必修2的重要内容,对这部分化学题目的解答需要掌握一定的解题方法和技巧,才能快速高效解题.本文对元素周期表方面的化学题目的解题方法与技巧进行了
提高教学质量的关键,便在于提高学生的素质水平.学生的素质水平主要包括,课堂学习态度以及课后自主学习能力.其中自主学习能力属于主动性因素,是学生学习方式及学习效率的决
本文选用原核系统pPRoEXTMHta载体,构建了RHDV—TP毒株VP60基因原核重组质粒,表达大小约50KD特异蛋白,Westernblot鉴定结果表明,重组蛋白可被RHD阳性血清特异性识别。将表达蛋白