论文部分内容阅读
基于SVD的人脸识别算法具有共同的缺点,即不同人脸图像对应的奇异值向量所在的基空间不一致,从而造成识别率低下。该文分析2种改进的类估计基空间奇异值分解算法(CSVD),通过对比实验选择出其中一种具有优势的CSVD算法。并在特征提取环节,提出CSVD算法与非负矩阵因子算法特征数据相融合的人脸识别算法。在ORL数据库上的实验结果表明,该结合方法有效地提高了识别率和训练速度。