论文部分内容阅读
传统方法缺陷区域的轮廓边缘存在断续,缺陷定位区域封闭性较差,导致检测识别准确率较低。针对这一问题,提出基于稀疏成像与机器视觉的金属材料次表面缺陷检测方法。扫描采集材料次表面二维图像,采用均值滤波和高斯滤波,对图像进行去噪处理,分割次表面缺陷的预处理图像,利用机器视觉,定位并合并缺陷区域,提取灰度、形状、纹理缺陷特征,利用稀疏成像,修正特征参数,对参数进行BP神经网络训练,进而识别金属次表面缺陷类型。选取钢管的凹坑、划痕和擦伤次表面缺陷,进行对比实验,结果表明,此次方法提高了缺陷检测识别准确率,更加符