论文部分内容阅读
无穷维动力系统的基本理念是将一个无穷维系统约化为一个有限维系统,但是,要进一步研究约化后的有限维系统的动力学行为是非常困难的,因为它们的结构是未知的。为了克服这个困难,诸如近似惯性流形等概念已被引入,对于Navier-Stokes方程,其近似惯性流形的存在性问题已被讨论,它是通过挤压性质找到一个Lipschitz函数,说明其整体吸引子位于该函数图的某个小领域,而文中是通过构造一个有限维解序列,说明长时间后其趋于方程的整体吸引子,理论上给出了一类发展方程的渐近吸引子的构造方法.