论文部分内容阅读
目的大数据环境下的多视角聚类是一个非常有价值且极具挑战性的问题。现有的适合大规模多视角数据聚类的方法虽然在一定程度上能够克服由于目标函数非凸性导致的局部最小值,但是缺乏对异常点鲁棒性的考虑,且在样本选择过程中忽略了视角多样性。针对以上问题,提出一种基于自步学习的鲁棒多样性多视角聚类模型(RD-MSPL)。方法 1)通过在目标函数中引入结构稀疏范数L_(2,1)来建模异常点; 2)通过在自步正则项中对样本权值矩阵施加反结构稀疏约束来增加在多个视角下所选择样本的多样性。结果在Extended Yale