论文部分内容阅读
目前反演台风内核风场时多采用线性回归方法进行建模,针对基于线性回归法的台风内核风速拟合效果较差的缺点,提出一种基于径向基函数神经网络(RBFNN)和偏微分方程(PDE)结合的红外卫星云图有眼台风内核风速和云图灰度建模方法。首先采用基于测地活动轮廓模型的PDE提取有眼台风的眼壁,获得台风眼壁空间位置和亮度数据;然后结合台风年鉴给出的台风近中心最大风速数据基于RBFNN进行有眼台风内核风速和云图灰度建模。实验结果表明:该算法改善了台风内核风速拟合效果,算法性能优于传统的线性回归法。