Smoke suppressant in flame retarded thermoplastic polyurethane composites:Synergistic effect and mec

来源 :纳米研究(英文版) | 被引量 : 0次 | 上传用户:lyxxlyxx
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Considerable smoke and toxic volatiles generation has compromised the application of thermoplastic polyurethane (TPU) and caused a great threat to human life.Here,nano-MgFe layered double hydroxide (MgFe-LDH) with uniform particle size was synthesized to reduce smoke density and toxic gases of TPU composites using ammonium polyphosphate (APP) as a flame retardant agent.The results show that the combination of 16 wt.% APP and 4 wt.% MgFe-LDH greatly decreased the smoke density (D20min and Ds,max),smoke production rate (SPR) and heat release rate (HRR) of TPU composites.Furthermore,the MgFe-LDH synergist demonstrated high efficiency in decreasing total volatiled products and toxic volatiles evolved,such as the CO,HCN and isocyanates.The reason was mainly attributed to the chemical reaction between MgFe-LDH and APP,which can promote the compactness of char layers with fine microstructure formed in the decomposition process of MgFe-LDH/APP/TPU composites.The protective char layers could act as barriers between combustion zone and matrix to protect the unburned substrate and promote smoke suppression effect.
其他文献
Graphene is a material with unique properties that can be exploited in electronics,catalysis,energy,and bio-related fields.Although,for maximal utilization of this material,high-quality graphene is required at both the growth process and after transfer of
Fluorescein angiography (FA) is a standard imaging modality for evaluating vascular abnormalities in retina-related diseases,which is recognized as the major cause of vision loss.Long-term and real-time fundus angiography is of great importance in preclin
Electrochemical CO2 reduction reaction (CO2RR) offers a practical solution to current global greenhouse effect by converting excessive CO2 into value-added chemicals or fuels.Noble metal-based nanomaterials have been considered as efficient catalysts for
Owing to their excellent optoelectronic properties,halide perovskite is very promising for photodetectors and other optoelectronic devices.Perovskite heterostructures are considered to be the key components for these devices.However,it is challenging to r
As a new type of iron-based superconductor,CaKFe4As4 has recently been demonstrated to be a promising platform for observing Majorana zero modes (MZMs).The surface of CaKFe4As4 plays an important role in realizing the MZM since it hosts superconducting to
Tumor cells undergoing immunogenic cell death (ICD) have emerged as an in situ therapeutic vaccine helping to activate a persistent anti-tumor response.Several chemotherapeutic agents have been demonstrated to induce ICD,however accompanied with severe ad
With the increasing demand for smart wearable clothing,the textile piezoelectric pressure sensor (T-PEPS) that can harvest mechanical energy directly has attracted significant attention.However,the current challenge of T-PEPS lies in remaining the outstan
External electric field and interlayer twist introduce diverse changes in their confined electronic states of bilayer graphene quantum dots.Using a quantum-dot model,the band gaps of twisted bilayer graphene in finite sizes of about 1.4-2.4 nm with varyin
Sodium ion batteries (SIBs) are alternatives to lithium ion batteries (LIBs),and offer some significant benefits such as cost reduction and a lower environmental impact;however,to compete with LIBs,further research is required to improve the performance o
Impeding high temperature sintering is challengeable for synthesis of carbon-supported single-atom catalysts (C-SACs),which requires high-cost precursor and strictly-controlled procedures.Herein,by virtue of the ultrastrong polarity of salt melts,sinterin