论文部分内容阅读
针对数量激增、数据类型复杂的遥感影像,准确和具有普适性的分类是亟待解决的问题。提出一种轮转径向基函数神经网络模型应用于遥感影像的处理方法。通过对输入数据的特征变换,使特征总集变为多个子特征集,依据PCA(主成分分析)变换处理这些新的子特征集,将得到的系数用于改变训练样本,增加基分类器之间的差异度,提高分类精度。以扎龙湿地为研究对象将该算法与其他方法比较,结果显示本文方法能得到更准确的分类结果,而且具有较高的泛化精度以及较小的过学习现象。